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Abstract 
Land use and land cover (LU/LC) maps, along with 

their temporal dynamics, are essential for flood 

prediction, seasonal water quality monitoring, 

environmental sustainability planning and ecological 

assessments. Accurate classification of satellite image 

datasets presents a challenging task due to the 

complexity of land use patterns and the need for precise 

methods. To address these challenges, this study 

utilized multi-temporal satellite image datasets to 

perform LU/LC classification and analyze temporal 

changes within the Kaddam watershed. The Support 

Vector Machine (SVM) classification technique was 

employed, using training samples that represent 

critical land use classes including water bodies, 

agricultural land, forests, urban areas and barren 

land. Representative polygons were digitized to train 

the SVM model and key parameters such as kernel type 

and gamma values were optimized to enhance 

classification accuracy.  

 

Performance evaluation was conducted using a 

confusion matrix to derive metrics such as overall 

accuracy and Kappa statistics. Ground truth data 

comparisons further validated the classification 

results. The high accuracy and robustness of the SVM-

based approach demonstrate its potential as a reliable 

tool for LU/LC classification and its applicability to 

other regions for effective land use management and 

planning. 
 

Keywords: Support Vector Machines, LULC, Training, 

Error matrix. 

 

Introduction  
Over the last two decades, numerous research papers have 

highlighted significant advancements in remote sensing and 

GIS technologies. These technologies, particularly satellite 

imagery, provide valuable spatial and temporal datasets that 

are essential for addressing various domains including 

environmental monitoring, urban planning, natural resource 

management, watershed management and disaster 

management7,16.  

* Author for Correspondence 

However, effective management, monitoring and planning 

activities require multi-temporal satellite datasets with 

varying spatial resolutions to effectively capture changes 

critical for tackling challenges posed by human activities9. 

The assessment of spatial and temporal changes in regional 

features can be conducted through either manual or 

automated methods using specialized software to transform 

raster to vector data.  

 

Manual methods, although precise, are time-consuming and 

require significant effort and expertise. Historically, trace 

films were overlaid to extract features, interpret visual 

elements and apply classification proficiency to provide 

information8.   Land Use Land Cover (LULC) classification 

techniques for extracting accurate data from remote sensing 

images have proven highly adaptable. Manual classification, 

in particular, is a highly effective approach for interpreting 

remotely sensed data when the analyst has in-depth 

knowledge of the area being classified. This method 

leverages the human brain’s ability to recognize image 

features and relate them to real-world objects, often 

surpassing computers in terms of accuracy.  

 

However, manual interpretation can be time-intensive and 

subjective, especially as it typically involves images limited 

to basic red, green and blue colours which may not fully 

exploit the wealth of spectral information in satellite images. 

Classification methods can be broadly grouped into 

supervised and unsupervised approaches, boundary-based 

and non-boundary classification and hard versus soft 

classification.  

 

Over recent decades, researchers, planners and scientists 

have generated LULC maps and analysed statistical and 

temporal changes using advanced digital techniques and 

specialized software such as ArcGIS and ERDAS Imagine. 

The key LULC classification techniques include manual 

interpretation, numerical approaches and digital methods 

like NDVI (Normalized Difference Vegetation Index), 

SAVI (Soil-Adjusted Vegetation Index) and NDWI 

(Normalized Difference Water Index)6,15. Supervised 

classification methods require prior knowledge of the study 

area and use algorithms such as Maximum-Likelihood 

Classifier (MLC), Support Vector Machine (SVM), Random 
Forest (RF), Decision Tree Classifier, K-Nearest Neighbour 

(KNN) and Artificial Neural Networks (ANN)11.  
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In contrast, unsupervised classification techniques, like the 

ISODATA clustering method, are used when there is no 

prior knowledge of class labels. The Support Vector 

Machine (SVM) is a robust supervised classification 

technique widely recognized for its ability to handle high-

dimensional data and complex feature spaces effectively5. In 

the context of remote sensing, SVM excels in classifying 

satellite imagery, particularly when dealing with medium-

resolution datasets, by minimizing misclassification through 

optimal hyperplane selection. For the present study, SVM 

was employed to classify multi-temporal satellite images 

from Landsat and IRS-P6 (LISS-III) into broad land cover 

categories such as agricultural land, forests, water bodies, 

barren land and settlements. 

 

Study Area 
The Kaddam watershed, located in Telangana, India, serves 

as a significant sub-watershed of the Godavari River basin, 

playing a crucial role in regional hydrology due to its 

undulating terrain, varied slopes and diverse elevations. 

Geographically, the watershed spans latitudes 18.5° N to 19° 

N and longitudes 78.5° E to 79° E. It experiences a tropical 

climate with annual rainfall ranging from 800 to 1000 mm 

and temperatures fluctuating between 15°C and 45°C. The 

watershed is predominantly agricultural, supporting crops 

such as paddy and cotton, while also encompassing 

deciduous forests that contribute to maintaining ecological 

balance and influencing hydrological processes. The 

location map of the study area is presented in fig. 1. 

Material and Methods 
Land Use and Land Cover (LULC) maps were prepared 

using satellite imagery and temporal datasets, as detailed in 

tables 1 and 2. The datasets for this study were obtained from 

the Bhuvan platform (https://bhuvan-app3.nrsc.gov.in/ 

data/download/index.php; table 1) and Earth Explorer 

(https://earthexplorer.usgs.gov/; table 2). Access to these 

datasets required login credentials and the specification of 

the area of interest (AOI) to download the relevant satellite 

images. Both platforms have provided free access to a wide 

range of satellite imagery for the research and scientific 

community over the past two decades, making them 

invaluable resources for LULC mapping and related studies. 

 

Preparation of FCC Image: The downloaded multi-

temporal satellite datasets, organized by date in separate 

folders, contain individual spectral bands. Each image is 

monochrome and requires processing to generate a color 

image for identifying classes within the dataset. To create a 

False Color Composite (FCC) image from these bands, the 

"Composite Bands" tool in the Arc Toolbox within ArcMap 

is utilized. Individual bands are added to the tool and the 

output file is named based on the folder's corresponding date. 

This process is systematically applied to all satellite image 

datasets, resulting in FCC maps that serve as inputs for 

generating Land Use and Land Cover (LULC) maps using 

the Support Vector Machine (SVM) method. 

 

 
Figure 1: Location Map of the study area 

https://bhuvan-app3.nrsc.gov.in/data/download/index.php
https://bhuvan-app3.nrsc.gov.in/data/download/index.php
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Table 1 

Satellite data sources of the study area (source: Bhuvan Website) 

S.N. Topo sheet No Bounding Box Date of Pass Spatial 

Resolution 

1 E44A03 78.0E19.25N-78.25E19.5N 14-10-08, 22-12-11 and  

25-09-16. 

23.5 meters 

2 E44A06 78.25E19.5N-78.5E19.75N 

3 E44A07 78.25E19.25N-78.5E19.5N 

4 E44A08 78.25E19.0N-78.5E19.25N 

5 E44A10 78.5E19.5N-78.75E19.75N 

6 E44A11 78.5E19.25N-78.75E19.5N 

7 E44A12 78.5E19.0N-78.75E19.25N 

8 E44A15 78.75E19.25N-79.0E19.5N 

9 E44A16 78.75E19.0N-79.0E19.25N 

 

Table 2 

Satellite data sources of the study area (source: Earth Explorer Website) 

S. N. Data Path and Row Date of Pass Spatial 

Resolution 

1 
Land Sat Thematic 

mapper and ETM7 
144/047 21-11-1988 and 19-04-2022. 30 meters 

 

Methodology: The Land Use and Land Cover (LULC) 

classification for this study was carried out using the Support 

Vector Machine (SVM) technique, a robust supervised 

machine learning algorithm widely recognized for its 

effectiveness in remote sensing applications5,11. The process 

began with the definition of training samples representing 

different land use and land cover classes such as water 

bodies, agricultural land, forest and urban areas. Using the 

Training Sample Manager in ArcMap or ArcGIS Pro, 

polygons were manually digitized for each class within the 

area of interest (AOI). These training samples served as the 

basis for training the SVM classifier, ensuring that the model 

captured the spectral and spatial characteristics of the study 

area accurately.  

 

Subsequently, SVM parameters were configured including 

the selection of an appropriate kernel function (e.g. linear, 

polynomial, or radial basis function) and adjustments were 

made to gamma and cost parameters to optimize class 

separability12. This setup ensured that the classifier was 

tailored to the specific spectral and spatial characteristics of 

the satellite images used in the study. After configuring the 

SVM classifier, the model was trained using the defined 

training samples, resulting in a classified raster where each 

pixel was assigned to one of the predefined classes.  

 

To refine the results, post-classification processing steps 

were undertaken, such as applying majority filtering to 

reduce noise and reclassifying combined or misclassified 

classes for enhanced clarity4. The classification output was 

evaluated for accuracy using a confusion matrix which 

compared the predicted classes with reference data to 

calculate key metrics like overall accuracy, kappa 

coefficient, user’s accuracy and producer’s accuracy3. This 

rigorous evaluation provided insights into the reliability of 

the classification results and highlighted areas for potential 

improvement.  

The final outputs including the FCC (False Color 

Composite) maps and LULC maps, were generated, offering 

a detailed spatial representation of land use and land cover 

patterns in the Kaddam watershed. These outputs serve as a 

critical tool for understanding spatial and temporal land-use 

dynamics in the region. A flow chart summarizing the 

methodology is represented in figure 2. 

 

Results and Discussion 
For the present study area, multi-temporal satellite images 

from Landsat and IRSP6 (LISS3) were classified into six 

broad land use and land cover categories: Agricultural Land, 

Cropped Land, Forest, Barren Land, Water Bodies (e.g. 

tanks and rivers) and Built-up Areas. The Level I 

classification approach provided a clear distinction of these 

categories, leveraging the medium resolution of the satellite 

datasets. From table 3, The land use and land cover (LULC) 

details provided display changes over time from 1988 to 

2022 across various categories. 

 

The analysis of Land Use and Land Cover (LULC) changes 

in the Kaddam Watershed reveals dynamic trends across 

various categories, reflecting shifts in land management and 

environmental conditions over the years. Water bodies 

exhibited a gradual increase from 18.16 sq km in 1988 to 

26.30 sq km in 2022, likely influenced by improved water 

management practices, reservoir construction and 

hydrological changes. In contrast, forest cover showed a 

consistent decline from 1,124.79 sq km in 1988 to 960.95 sq 

km by 2016, suggesting significant deforestation during this 

period. However, stabilization after 2016, with a slight 

increase to 961.77 sq km in 2022, indicates potential 

conservation efforts. Settlements expanded steadily from 

30.03 sq km in 1988 to 34.01 sq km by 2022, highlighting 

urban growth and population increase. Meanwhile, river 

areas remained relatively stable, with minor variations due 
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to natural river dynamics or advancements in mapping 

precision. 

 

Agricultural land showed fluctuations, peaking at 995.36 sq 

km in 2011 before a sharp decline to 279.49 sq km in 2016, 

followed by a modest recovery to 289.71 sq km in 2022, 

possibly reflecting land-use conversions and reclamation 

efforts. Cropped land demonstrated a dramatic increase from 

358.1 sq km in 1988 to 1,315.35 sq km by 2022, driven by 

intensified agricultural practices and irrigation 

improvements. Conversely, barren land, which increased 

initially, dropped significantly from 334.77 sq km in 2008 to 

just 28.42 sq km in 2022, indicating successful reclamation 

and repurposing of degraded lands. These results underscore 

the interplay between human activities, policy interventions 

and natural dynamics, shaping the LULC patterns within the 

Kaddam Watershed over time. Temporal and multiple 

prepared LULC maps of the study area are represented in the 

figure.3. 

 

 
Figure 2: Flowchart of Methodology 

 

 
Figure 3: LULC Maps of the study area 

 

Table 3 

Land use and Land cover classes derived from satellite images using SVM technique 

LULC class Year-1988 Year-2008 Year-2011 Year-2016 Year-2022 

Area in Sq kms 

Water 18.16 17.66 19.66 18.93 26.3 

Forest 1124.79 995.35 973.65 960.95 961.77 

Agricultural land 886.99 984.91 995.36 279.49 289.71 

Barren 237.54 334.76 236.69 68.84 28.42 

settlements 30.03 31.35 32.08 33.52 34.01 

River 0.58 0.8 0.89 0.64 0.67 

Cropped Land 358.1 291.41 398.56 1293.86 1315.35 

Define Training samples Setup SVM Parameters Train the SVM Model 

Perform SVM Classification Post Classification Processing 



     Disaster Advances                                                                                                                            Vol. 18 (6) June (2025) 

https://doi.org/10.25303/186da0106            5 

Error Matrix 
The classification analysis across multiple years (2008, 

2011, 2016 and 2022) highlights the performance of land 

cover mapping using remote sensing data, with high 

accuracies and notable insights into classification 

challenges. In 2022, agricultural land exhibited excellent 

classification performance, achieving a user accuracy of 

96.4% and a producer accuracy of 97.2%. Cropped land 

stood out with a perfect classification accuracy of 100%, 

underscoring the effectiveness of the classifier for this 

category. Barren land also demonstrated strong results, with 

user and producer accuracies of 96% and 90%, respectively. 

However, forest and river classes faced some classification 

challenges. Forest user accuracy dropped to 80%, despite 

maintaining a producer accuracy of 100%, while the river 

class showed moderate confusion with barren and forest 

classes, achieving a user accuracy of 85.2%.  

 

Settlements and water bodies revealed lower accuracies, 

both at 70%, due to minor overlaps with other categories. 

The overall Kappa coefficient of 0.903 reflects a strong 

agreement between classification and reference data, despite 

some category-specific challenges. In 2016, water bodies 

were perfectly classified with 100% user and producer 

accuracies, demonstrating the classifier's robustness in this 

category. Similarly, forest and cropped land maintained 

strong accuracies, with user and producer accuracies above 

94%. However, the river class showed significant confusion, 

with a user accuracy of 35.3% and a producer accuracy of 

66.7%, indicating challenges in distinguishing this class 

from others.  

 

Agricultural land, barren land and settlements maintained 

high classification accuracies above 90%, reinforcing the 

reliability of the results for these categories. The Kappa 

coefficient for 2016, at 0.905, highlights consistent 

classification reliability across most categories, with room 

for improvement in the river class. Overall, the results from 

2008 to 2022 demonstrate robust classification accuracy for 

most land cover types, with high Kappa coefficients (ranging 

from 0.898 to 0.938) reflecting strong agreement. 

Challenges remain for certain classes like river and 

settlements, likely due to spectral overlaps, but the findings 

underscore the efficacy of the classification methodology. 

 

Conclusion 
The study highlights the effectiveness of Remote Sensing 

(RS) and GIS as essential tools for monitoring and managing 

Land Use and Land Cover (LULC) changes. By utilizing 

Support Vector Machine (SVM) classification, the analysis 

achieved high classification accuracies across multiple 

categories, outperforming traditional methods frequently 

cited in the literature, such as Maximum Likelihood 

Classifier (MLC) or Decision Tree (DT). SVM's ability to 

handle medium-resolution satellite datasets and high-

dimensional feature spaces resulted in precise categorization 

of land cover types including agricultural land, forests, water 

bodies and urban settlements. The SVM-based classification 

method proved superior in addressing spectral overlaps and 

minimizing misclassification errors, particularly for 

challenging classes like water bodies and cropped lands.  

 

For instance, the Kappa coefficients consistently remained 

above 0.9 across all study years, demonstrating strong 

agreement between classified and reference data, a 

benchmark often unmatched by alternative classifiers. 

Furthermore, the study revealed critical insights such as 

forest stabilization post-2016, significant expansion of water 

bodies and urban growth trends, which align with findings 

from prior research emphasizing the adaptability and 

accuracy of SVM in diverse geographic contexts. These 

results underscore the potential of SVM classification as a 

reliable approach for supporting sustainable land-use 

planning and ecological management, contributing to 

informed decision-making and conservation efforts. 
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