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Abstract

Land use and land cover (LU/LC) maps, along with
their temporal dynamics, are essential for flood
prediction, seasonal water quality monitoring,
environmental sustainability planning and ecological
assessments. Accurate classification of satellite image
datasets presents a challenging task due to the
complexity of land use patterns and the need for precise
methods. To address these challenges, this study
utilized multi-temporal satellite image datasets to
perform LU/LC classification and analyze temporal
changes within the Kaddam watershed. The Support
Vector Machine (SVM) classification technique was
employed, using training samples that represent
critical land use classes including water bodies,
agricultural land, forests, urban areas and barren
land. Representative polygons were digitized to train
the SVM model and key parameters such as kernel type
and gamma values were optimized to enhance
classification accuracy.

Performance evaluation was conducted using a
confusion matrix to derive metrics such as overall
accuracy and Kappa statistics. Ground truth data
comparisons further validated the classification
results. The high accuracy and robustness of the SVM-
based approach demonstrate its potential as a reliable
tool for LU/LC classification and its applicability to
other regions for effective land use management and
planning.

Keywords: Support Vector Machines, LULC, Training,
Error matrix.

Introduction

Over the last two decades, numerous research papers have
highlighted significant advancements in remote sensing and
GIS technologies. These technologies, particularly satellite
imagery, provide valuable spatial and temporal datasets that
are essential for addressing various domains including
environmental monitoring, urban planning, natural resource
management, watershed management and disaster
management”:16.,
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However, effective management, monitoring and planning
activities require multi-temporal satellite datasets with
varying spatial resolutions to effectively capture changes
critical for tackling challenges posed by human activities®.
The assessment of spatial and temporal changes in regional
features can be conducted through either manual or
automated methods using specialized software to transform
raster to vector data.

Manual methods, although precise, are time-consuming and
require significant effort and expertise. Historically, trace
films were overlaid to extract features, interpret visual
elements and apply classification proficiency to provide
information®. Land Use Land Cover (LULC) classification
techniques for extracting accurate data from remote sensing
images have proven highly adaptable. Manual classification,
in particular, is a highly effective approach for interpreting
remotely sensed data when the analyst has in-depth
knowledge of the area being classified. This method
leverages the human brain’s ability to recognize image
features and relate them to real-world objects, often
surpassing computers in terms of accuracy.

However, manual interpretation can be time-intensive and
subjective, especially as it typically involves images limited
to basic red, green and blue colours which may not fully
exploit the wealth of spectral information in satellite images.
Classification methods can be broadly grouped into
supervised and unsupervised approaches, boundary-based
and non-boundary classification and hard versus soft
classification.

Over recent decades, researchers, planners and scientists
have generated LULC maps and analysed statistical and
temporal changes using advanced digital techniques and
specialized software such as ArcGIS and ERDAS Imagine.
The key LULC classification techniques include manual
interpretation, numerical approaches and digital methods
like NDVI (Normalized Difference Vegetation Index),
SAVI (Soil-Adjusted Vegetation Index) and NDWI
(Normalized Difference Water Index)%5. Supervised
classification methods require prior knowledge of the study
area and use algorithms such as Maximum-Likelihood
Classifier (MLC), Support Vector Machine (SVM), Random
Forest (RF), Decision Tree Classifier, K-Nearest Neighbour
(KNN) and Artificial Neural Networks (ANN)L.
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In contrast, unsupervised classification techniques, like the
ISODATA clustering method, are used when there is no
prior knowledge of class labels. The Support Vector
Machine (SVM) is a robust supervised classification
technique widely recognized for its ability to handle high-
dimensional data and complex feature spaces effectively®. In
the context of remote sensing, SVM excels in classifying
satellite imagery, particularly when dealing with medium-
resolution datasets, by minimizing misclassification through
optimal hyperplane selection. For the present study, SVM
was employed to classify multi-temporal satellite images
from Landsat and IRS-P6 (LISS-111) into broad land cover
categories such as agricultural land, forests, water bodies,
barren land and settlements.

Study Area

The Kaddam watershed, located in Telangana, India, serves
as a significant sub-watershed of the Godavari River basin,
playing a crucial role in regional hydrology due to its
undulating terrain, varied slopes and diverse elevations.
Geographically, the watershed spans latitudes 18.5° N to 19°
N and longitudes 78.5° E to 79° E. It experiences a tropical
climate with annual rainfall ranging from 800 to 1000 mm
and temperatures fluctuating between 15°C and 45°C. The
watershed is predominantly agricultural, supporting crops
such as paddy and cotton, while also encompassing
deciduous forests that contribute to maintaining ecological
balance and influencing hydrological processes. The
location map of the study area is presented in fig. 1.
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Material and Methods

Land Use and Land Cover (LULC) maps were prepared
using satellite imagery and temporal datasets, as detailed in
tables 1 and 2. The datasets for this study were obtained from
the Bhuvan platform (https://bhuvan-app3.nrsc.gov.in/
data/download/index.php; table 1) and Earth Explorer
(https://earthexplorer.usgs.gov/; table 2). Access to these
datasets required login credentials and the specification of
the area of interest (AOI) to download the relevant satellite
images. Both platforms have provided free access to a wide
range of satellite imagery for the research and scientific
community over the past two decades, making them
invaluable resources for LULC mapping and related studies.

Preparation of FCC Image: The downloaded multi-
temporal satellite datasets, organized by date in separate
folders, contain individual spectral bands. Each image is
monochrome and requires processing to generate a color
image for identifying classes within the dataset. To create a
False Color Composite (FCC) image from these bands, the
"Composite Bands" tool in the Arc Toolbox within ArcMap
is utilized. Individual bands are added to the tool and the
output file is named based on the folder's corresponding date.
This process is systematically applied to all satellite image
datasets, resulting in FCC maps that serve as inputs for
generating Land Use and Land Cover (LULC) maps using
the Support Vector Machine (SVM) method.

Godavari Basin

Kaddam Watéfshed

Figure 1: Location Map of the study area
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Table 1
Satellite data sources of the study area (source: Bhuvan Website)

S.N. Topo sheet No Bounding Box Date of Pass Spatial
Resolution
1 E44A03 78.0E19.25N-78.25E19.5N 14-10-08, 22-12-11 and 23.5 meters
2 E44A06 78.25E19.5N-78.5E19.75N 25-09-16.
3 E44A07 78.25E19.25N-78.5E19.5N
4 E44A08 78.25E19.0N-78.5E19.25N
5 E44A10 78.5E19.5N-78.75E19.75N
6 E44A11 78.5E19.25N-78.75E19.5N
7 E44A12 78.5E19.0N-78.75E19.25N
8 E44A15 78.75E19.25N-79.0E19.5N
9 E44A16 78.75E19.0N-79.0E19.25N
Table 2
Satellite data sources of the study area (source: Earth Explorer Website)
S.N. Data Path and Row Date of Pass Spatial
Resolution
p | Land Sat Thematic 144/047 21-11-1988 and 19-04-2022, 30 meters
mapper and ETM7

Methodology: The Land Use and Land Cover (LULC)
classification for this study was carried out using the Support
Vector Machine (SVM) technique, a robust supervised
machine learning algorithm widely recognized for its
effectiveness in remote sensing applications®!%. The process
began with the definition of training samples representing
different land use and land cover classes such as water
bodies, agricultural land, forest and urban areas. Using the
Training Sample Manager in ArcMap or ArcGIS Pro,
polygons were manually digitized for each class within the
area of interest (AOI). These training samples served as the
basis for training the SVM classifier, ensuring that the model
captured the spectral and spatial characteristics of the study
area accurately.

Subsequently, SVM parameters were configured including
the selection of an appropriate kernel function (e.g. linear,
polynomial, or radial basis function) and adjustments were
made to gamma and cost parameters to optimize class
separability’?. This setup ensured that the classifier was
tailored to the specific spectral and spatial characteristics of
the satellite images used in the study. After configuring the
SVM classifier, the model was trained using the defined
training samples, resulting in a classified raster where each
pixel was assigned to one of the predefined classes.

To refine the results, post-classification processing steps
were undertaken, such as applying majority filtering to
reduce noise and reclassifying combined or misclassified
classes for enhanced clarity*. The classification output was
evaluated for accuracy using a confusion matrix which
compared the predicted classes with reference data to
calculate key metrics like overall accuracy, kappa
coefficient, user’s accuracy and producer’s accuracy®. This
rigorous evaluation provided insights into the reliability of
the classification results and highlighted areas for potential
improvement.
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The final outputs including the FCC (False Color
Composite) maps and LULC maps, were generated, offering
a detailed spatial representation of land use and land cover
patterns in the Kaddam watershed. These outputs serve as a
critical tool for understanding spatial and temporal land-use
dynamics in the region. A flow chart summarizing the
methodology is represented in figure 2.

Results and Discussion

For the present study area, multi-temporal satellite images
from Landsat and IRSP6 (LISS3) were classified into six
broad land use and land cover categories: Agricultural Land,
Cropped Land, Forest, Barren Land, Water Bodies (e.g.
tanks and rivers) and Built-up Areas. The Level |
classification approach provided a clear distinction of these
categories, leveraging the medium resolution of the satellite
datasets. From table 3, The land use and land cover (LULC)
details provided display changes over time from 1988 to
2022 across various categories.

The analysis of Land Use and Land Cover (LULC) changes
in the Kaddam Watershed reveals dynamic trends across
various categories, reflecting shifts in land management and
environmental conditions over the years. Water bodies
exhibited a gradual increase from 18.16 sq km in 1988 to
26.30 sq km in 2022, likely influenced by improved water
management  practices, reservoir construction and
hydrological changes. In contrast, forest cover showed a
consistent decline from 1,124.79 sq km in 1988 to 960.95 sq
km by 2016, suggesting significant deforestation during this
period. However, stabilization after 2016, with a slight
increase to 961.77 sq km in 2022, indicates potential
conservation efforts. Settlements expanded steadily from
30.03 sq km in 1988 to 34.01 sq km by 2022, highlighting
urban growth and population increase. Meanwhile, river
areas remained relatively stable, with minor variations due
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to natural river dynamics or advancements in mapping
precision.

Agricultural land showed fluctuations, peaking at 995.36 sq
km in 2011 before a sharp decline to 279.49 sq km in 2016,
followed by a modest recovery to 289.71 sq km in 2022,
possibly reflecting land-use conversions and reclamation
efforts. Cropped land demonstrated a dramatic increase from
358.1 sq km in 1988 to 1,315.35 sq km by 2022, driven by
intensified  agricultural  practices and  irrigation
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improvements. Conversely, barren land, which increased
initially, dropped significantly from 334.77 sq km in 2008 to
just 28.42 sq km in 2022, indicating successful reclamation
and repurposing of degraded lands. These results underscore
the interplay between human activities, policy interventions
and natural dynamics, shaping the LULC patterns within the
Kaddam Watershed over time. Temporal and multiple
prepared LULC maps of the study area are represented in the
figure.3.

Define Training samples

Setup SVM Parameters

Train the SVM Model

Post Classification Processing

« Perform SVM Classification

Figure 2: Flowchart of Methodology
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Figure 3: LULC Maps of the study area

Table 3
Land use and Land cover classes derived from satellite images using SVM technique
LULCclass | Year-1988 | Year-2008 | Year-2011 | Year-2016 | Year-2022
Area in Sq kms
Water 18.16 17.66 19.66 18.93 26.3
Forest 1124.79 995.35 973.65 960.95 961.77
Agricultural land 886.99 984.91 995.36 279.49 289.71
Barren 237.54 334.76 236.69 68.84 28.42
settlements 30.03 31.35 32.08 33.52 34.01
River 0.58 0.8 0.89 0.64 0.67
Cropped Land 358.1 291.41 398.56 1293.86 1315.35
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Error Matrix

The classification analysis across multiple years (2008,
2011, 2016 and 2022) highlights the performance of land
cover mapping using remote sensing data, with high
accuracies and notable insights into classification
challenges. In 2022, agricultural land exhibited excellent
classification performance, achieving a user accuracy of
96.4% and a producer accuracy of 97.2%. Cropped land
stood out with a perfect classification accuracy of 100%,
underscoring the effectiveness of the classifier for this
category. Barren land also demonstrated strong results, with
user and producer accuracies of 96% and 90%, respectively.
However, forest and river classes faced some classification
challenges. Forest user accuracy dropped to 80%, despite
maintaining a producer accuracy of 100%, while the river
class showed moderate confusion with barren and forest
classes, achieving a user accuracy of 85.2%.

Settlements and water bodies revealed lower accuracies,
both at 70%, due to minor overlaps with other categories.
The overall Kappa coefficient of 0.903 reflects a strong
agreement between classification and reference data, despite
some category-specific challenges. In 2016, water bodies
were perfectly classified with 100% user and producer
accuracies, demonstrating the classifier's robustness in this
category. Similarly, forest and cropped land maintained
strong accuracies, with user and producer accuracies above
94%. However, the river class showed significant confusion,
with a user accuracy of 35.3% and a producer accuracy of
66.7%, indicating challenges in distinguishing this class
from others.

Agricultural land, barren land and settlements maintained
high classification accuracies above 90%, reinforcing the
reliability of the results for these categories. The Kappa
coefficient for 2016, at 0.905, highlights consistent
classification reliability across most categories, with room
for improvement in the river class. Overall, the results from
2008 to 2022 demonstrate robust classification accuracy for
most land cover types, with high Kappa coefficients (ranging
from 0.898 to 0.938) reflecting strong agreement.
Challenges remain for certain classes like river and
settlements, likely due to spectral overlaps, but the findings
underscore the efficacy of the classification methodology.

Conclusion

The study highlights the effectiveness of Remote Sensing
(RS) and GIS as essential tools for monitoring and managing
Land Use and Land Cover (LULC) changes. By utilizing
Support Vector Machine (SVM) classification, the analysis
achieved high classification accuracies across multiple
categories, outperforming traditional methods frequently
cited in the literature, such as Maximum Likelihood
Classifier (MLC) or Decision Tree (DT). SVM's ability to
handle medium-resolution satellite datasets and high-
dimensional feature spaces resulted in precise categorization
of land cover types including agricultural land, forests, water
bodies and urban settlements. The SVM-based classification
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method proved superior in addressing spectral overlaps and
minimizing misclassification errors, particularly for
challenging classes like water bodies and cropped lands.

For instance, the Kappa coefficients consistently remained
above 0.9 across all study years, demonstrating strong
agreement between classified and reference data, a
benchmark often unmatched by alternative classifiers.
Furthermore, the study revealed critical insights such as
forest stabilization post-2016, significant expansion of water
bodies and urban growth trends, which align with findings
from prior research emphasizing the adaptability and
accuracy of SVM in diverse geographic contexts. These
results underscore the potential of SVM classification as a
reliable approach for supporting sustainable land-use
planning and ecological management, contributing to
informed decision-making and conservation efforts.
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